KamLAND, KamLAND-Zen and Beyond - 1. Double Beta Decay with KamLAND-Zen results, prospects and dreams - 2. Evolution of KamLAND Scintillation Detector past 15 years and next 20 years Sanshiro Enomoto University of Washington ### KamLAND Detector: Shielded Calorimeter #### Layered Shields 1000 m underground for muon reduction Outer detector for active veto Outer detector for neutron shield Buffer oil for neutron/gamma shield Balloon with EVOH for Radon shield Acrylic wall for Radon shield Air tightness for Radon/Kr shield Active Volume Large: 1000 ton, 13-m diameter Clean: U: 3.5×10^{-18} g/g, Th: 5.2×10^{-17} g/g Scintillator: 8000 photons/MeV Viewed by PMTs: 1325×17 -inch + 554×20 -inch Originally constructed to detect antineutrinos from surrounding reactors "Evidence for Reactor Antineutrino Disappearance", PRL 90 021802 (2003) ### KamLAND as Active Low-BG Playground #### Double Beta Decay CdWO₄ Crystal small crystal tested with KamLAND CaF₂ Crystal joint with CANDLES Xe Dissolved Scintillator KamLAND-Zen ... #### Sterile Neutrinos Ce Source (CeLAND) - 75 kCi ¹⁴⁴Ce - place center or outer vessel #### Neutrino Beam (IsoDAR) - use DAE δ ALUS injector - 60 MeV proton beam to Be - neutrons from Be - ⁷Li(n, γ)⁸Li - 8Li beta decays: 10²² / yr #### Dark Matter Nal Crystal (KamLAND-PICO) - verify DAMA/LIBRA results - ~1000 kg Nal crystal - U 1.1 ppt, Th 0.6 ppt crystal already developed ### KamLAND-Zen Project Searches for $0\nu\beta\beta$ with 380 kg of 91.7% Enriched ¹³⁶Xe (Q=2.458 MeV) - √ 3 wt% Xe in liquid scintillator - ✓ contained in 1.54m radius inner balloon - √ balloon replaceable, Xe extractable - ✓ make use of KamLAND facilities. - purification system - PMT, ATWD digitizer, analysis tools, ... - ✓ can live with KamLAND (reactor & geo) - √ No BG particle escape - no 2.6 MeV peak from ²⁰⁸Tl - Bi-Po cascade decay tagging #### **Drawbacks:** - poor energy resolution (~4% @ 2.6 MeV) - no β/γ discrimination ### KamLAND-Zen: Key Developments #### Xe-loaded Liquid Scintillator - Density balance - Light-yield matching to outer LS - Xe reduces light-yield by ~10% - increase PPO - density ... #### Inner Balloon Not commercially available, developed for ZEN - Clean: U/Th/K ~10⁻¹³ g/g -no filler, no lubricant, no glue - Thin: $25 \mu m$ for Bi-Po α -tagging - Welding by heat-only (no glue) - Xe-gas tight (<220 g/yr) - Transparent: 99.4% @400nm ### Inner-Balloon Fabrication & Installation Ultrasonic cleaning in a super clean room ### Xe Handling Facility - ✓ Xe Dissolving by bubbling - ✓ Xe Extraction by degassing & bubbling with scintillator cold trap - ✓ Precise Control & Monitor (0.005 ~ 0.01 %) by density measurement & mass balance - ✓ 91.7% Enriched ¹³⁶Xe, 610 kg in hand ### Xe-LS Filling into Inner-Balloon Inner balloon was initially filled with z [m] normal LS (no Xe) Then Xe-LS was fed from bottom 0.5 with slightly higher density (+0.035%) Initial Rn contamination makes -0.5newly filled Xe-LS very visible enrXe 330 kg filled 1.5 2.5 $x^2 + y^2 [m^2]$ (enrichment 91.7%) $x^2 + y^2 [m^2]$ Start data taking on Sep 24th 2011 (only two years from the first Zen funding) Mix the whole volume by few more full circulation ### **Energy Calibration** ### Fiducial Volume ²¹⁴Bi in balloon limits FV Vertex resolution: $\sigma \sim 15 \text{ cm} / \sqrt{\text{E(MeV)}}$ FV ratio estimated with uniformly distributing initial ²¹⁴Bi $$\Rightarrow$$ 3.9% / 4.1% FV error (DS1) (DS2) All other syst. errors: <1% (136Xe amount, efficiency, etc) ### Energy Spectrum & 2νββ Half Life $$T_{1/2}^{2\nu}$$ = 2.38 ± 0.02 (stat) ± 0.14 (syst) ×10²⁵ yr Consistent with EXO-200 Phys.Rev.C 85 045504 (2012) ### The Peak is not 0νββ (and not ²⁰⁸TI) 10^{4} 238U Series ··· ²³²Th Series → Data — Total 0ν ββ Spectrum shape is inconsistent at >8 σ ## Balloon is Contaminated with Fukushima Fallout ¹³⁷Cs and ¹³⁴Cs dominate the balloon activity ^{134}Cs / ^{137}Cs ~ 0.8, consistent with fallout composition Cs is not soluble in scintillator ### Balloon is Contaminated with Fukushima Fallout Fallouts detected in Sendai Soil: 134Cs, 137Cs, 110mAg, 129mTe, 95Nb, 90Y, 89Sr → all included in spectrum fit ## ~1000 atoms of 110mAg in Volume - ✓ Spectrum most consistent with ^{110m}Ag (²⁰⁸Bi, ⁸⁸Y do not fit well, but not excluded) - ✓ Decay-time consistent with ^{110m}Ag (τ_{1/2}: 250 days) - ✓ Peak remains after Xe extraction → not from Xe - cosmic- μ interaction ## <u>0νββ Limit</u> PRL 110, 062502 (2013) #### 213.4 days, 98.5 kg yr Likelihood fit to binned spectrum $0\nu\beta\beta$: < 0.16 events/kg/yr $$T_{1/2}^{0\nu}$$ > 1.9×10²⁵ yr (90% CL) $\langle m_{\beta\beta} \rangle$ < 120 ~ 250 meV (sensitivity: 1.0×10^{25} yr; we are top 12% lucky) ## Combined with EXO-200, Comparison with Ge ## Ongoing: 110mAg Removal by Distillation Completed in Nov 2013 >90% of 110mAg removed #### KamLAND-Zen 2nd Phase Dec 2013 ~, enrXe 380 kg (+60 kg to phase 1) ### Zen Future: Less Background, More Resolution mirror prototype ### Zen Dream: More Target Density Super-KamLAND-Zen Pressurize the Zen Balloon × 4 more Xe concentration at 30 m deep ### Evolution of KamLAND Scintillation Detector #### Water Cherenkov Detector vs Scintillation Detector #### Super-Kamiokande #### **KamLAND** #### Advantages Clean (U & Th are ionic) High light yield (x ~100 of Water Cherenkov) → Low energy threshold (~300 eV, limited by ¹⁴C) Delayed coincidence \rightarrow Selective sensitivity to \overline{V}_e #### **Drawbacks** Costly + Layered Shields → Small No directional sensitivity Signal pile-up Mess after cosmic muons (more p.e. + low thresh) ## Pile-up Free Electronics (LBL, 2001) #### Waveform Recording with ATWD (ATWD: Analog Transient Waveform Digitizer) ~1.5 ns interval sampling for all channels!! Two 4-ch ATWDs per PMT - 4-ch for dynamic range (x20, x4 and x0.5 plus CLK) - two ATWDs for cascading events #### Bi-Po Pile-up Waveform (Data) #### Proton-Decay Waveform (MC) $$p \rightarrow K^+ \overline{\nu}_\mu; K^+ \rightarrow \mu^+ \nu_\mu; \mu^+ \rightarrow e^+ \overline{\nu}_\mu \nu_e$$ ### Dead-time Free Electronics (Tohoku, 2009) #### Mess After Cosmic Muons - after-pulses: up-to ~100k events in ~100 μ s - neutrons: up-to ~100 events in ~ms neutrons tells us location of 10 C \rightarrow pin-point veto #### Free-Running FADC + Inline Digital Processing 1 GHz FADC per ch10 μs ring buffer per ch>256 event buffer per ch Very similar to the former design after 8 years!! Inline data processing (zero suppression etc) Onboard processor, serial readout option All 1325 channels, with zero-suppression (only 8 ch are shown below) In a longer time range ### Even longer time range #### And more!! ### <u>Dead-Layer Free Scintillating Balloon (R&D)</u> # Imperfect Bi-Po tagging due to balloon *dead-layer* #### PEN was found to be scintillating material (2011) | Material | Polyethylene
naphthalate | Organic scintillator
(ref. [14]) | |--------------------------|--|-------------------------------------| | Supplier | Teijin Chemicals | Saint-Gobain | | Base | $(C_{14}H_{10}O_4)_n$ | $(C_9H_{10})_n$ | | Density | $(C_{14}H_{10}O_4)_n$
1.33 g/cm^3 | $1.03{\rm g}/{\rm cm}^3$ | | Refractive index | 1.65 | 1.58 | | Light output | $\sim 10500~\rm photon/MeV$ | $10000 \mathrm{\ photon/MeV}$ | | Wavelength max. emission | $425\mathrm{nm}$ | $425\mathrm{nm}$ | #### First look at 50 μ m-thick PEN film (Tohoku) - √ Scintillates!! - ✓ Clean enough, Weld-able, chemically compatible with LS Detail studies ongoing ## Scintillation Imaging (R&D) #### Particle Identification using Event Size ## Scintillation Imaging (R&D) Optics and Readout Design (Tohoku) ## Directional Sensitivity (R&D) #### Scintillation Imaging for Anti-Neutrino Events Neutrons remember neutrino direction but forget it soon For Directionality, - ✓ Reduce neutron diffusion - ✓ Eliminate gamma emission ### Detecting Antineutrino Direction is a Revolution in Geophysics 3D Mapping of U & Th distributions in Earth interior (with multi-site observation, or mobile detectors) ### Directional Sensitivity (R&D) #### ⁶Li-loaded Liquid Scintillator $$\overline{v}_e + p \rightarrow e^+ + n$$ $$n + {}^6\text{Li} \rightarrow {}^3\text{H} + \alpha$$ - ✓ Large capture cross-section 940 barn (H: 0.3 barn) - ✓ α -emission, no γ (Gd and ¹⁰B both emit γ) #### MC Simulation (0.15 wt% ⁶Li) #### Li-loaded Liquid Scintillator Development (Tohoku) $PC + PPC + POE + LiBr + H_2O$ (POE: surfactant) 0.8 wt% Li (6Li abundance 7.59%, enrichment is possible) Transparency 65cm@400nm, light yield 45% of KamLAND LS ### <u>Summary</u> #### KamLAND-Zen 0νββ # KamLAND Scintillation Detector Evolution #### 2002~ - Large Volume, Ultra-Pure - Pile-up Free Readout (ATWD) #### 2010~ Dead-time Free Readout for ¹⁰C tagging etc #### R&D Dead-space Free Container with scintillating balloon #### R&D • Scintillation Imaging for e/γ discrimination etc #### R&D Directional Sensitivity for geoneutrinos, supernova, ··· ### KamLAND Founders VOLUME 90, NUMBER 2 PHYSICAL REVIEW LETTERS week ending 17 JANUARY 2003 #### First Results from KamLAND: Evidence for Reactor Antineutrino Disappearance K. Eguchi, ¹ S. Enomoto, ¹ K. Furuno, ¹ J. Goldman, ¹ H. Hanada, ¹ H. Ikeda, ¹ K. Ikeda, ¹ K. Inoue, ¹ K. Ishihara, ¹ W. Itoh, ¹ T. Iwamoto, ¹ T. Kawashima, ¹ H. Kinoshita, ¹ Y. Kishimoto, ¹ M. Koga, ¹ Y. Koseki, ¹ T. Maeda, ¹ T. Mitsui, ¹ M. Motoki, ¹ K. Nakajima, ¹ M. Nakajima, ¹ T. Nakajima, ¹ H. Ogawa, ¹ K. Owada, ¹ T. Sakabe, ¹ I. Shimizu, ¹ J. Shirai, ¹ F. Suekane, ¹ A. Suzuki, ¹ K. Tada, ¹ O. Tajima, ¹ T. Takayama, ¹ K. Tamae, ¹ H. Watanabe, ¹ J. Busenitz, ² Z. Djurcic, ² K. McKinny, ² D.-M. Mei, ² A. Piepke, ² E. Yakushev, ² B. E. Berger, ³ Y. D. Chan, ³ M. P. Decowski, ³ D. A. Dwyer, ³ S. J. Freedman, ³ Y. Fu, ³ B. K. Fujikawa, ³ K. M. Heeger, ³ K. T. Lesko, ³ K.-B. Luk, ³ H. Murayama, ³ D. R. Nygren, ³ C. E. Okada, ³ A.W. P. Poon, ³ H. M. Steiner, ³ L. A. Winslow, ³ G. A. Horton-Smith, ⁴ R. D. McKeown, ⁴ J. Ritter, ⁴ B. Tipton, ⁴ P. Vogel, ⁴ C. E. Lane, ⁵ T. Miletic, ⁵ P.W. Gorham, ⁶ G. Guillian, ⁶ J. G. Learned, ⁶ J. Maricic, ⁶ S. Matsuno, ⁶ S. Pakvasa, ⁶ S. Dazeley, ⁷ S. Hatakeyama, ⁷ M. Murakami, ⁷ R. C. Svoboda, ⁷ B. D. Dieterle, ⁸ M. DiMauro, ⁸ J. Detwiler, ⁹ G. Gratta, ⁹ K. Ishii, ⁹ N. Tolich, ⁹ Y. Uchida, ⁹ M. Batygov, ¹⁰ W. Bugg, ¹⁰ H. Cohn, ¹⁰ Y. Efremenko, ¹⁰ Y. Kamyshkov, ¹⁰ A. Kozlov, ¹⁰ Y. Nakamura, ¹⁰ L. De Braeckeleer, ¹¹ C. R. Gould, ¹¹ H. J. Karwowski, ¹¹ D. M. Markoff, ¹¹ J. A. Messimore, ¹¹ K. Nakamura, ¹¹ R. M. Rohm, ¹¹ W. Tornow, ¹¹ A. R. Young, ¹¹ and Y.-F. Wang¹² (KamLAND Collaboration)